Nomenclature

Symbols defined and used locally are not included here.

A	area,	m^2
a	acceleration,	ms^{-2}
$A_{\rm c}$	cloud radius around bubble,	m
C	solid concentration by volume fraction,	-
c	dry cake mass per unit volume filtrate,	kg m ⁻³
C_{d}	drag coefficient,	-
$C_{ m f}$	feed solid concentration by volume fraction,	-
C_{u}	underflow concentration by volume fraction,	-
D	vessel, or pipe, diameter,	m
d	pipe diameter,	m
$d_{ m f}$	fibre diameter,	m
E	efficiency,	-
F	force,	$kg m s^{-2}$
f	friction factor,	-
$f_{ m g}$	gas friction factor,	-
$f_{\rm i}$	number of particles within an increment,	-
$f_{\rm s}$	solids friction factor,	-
$G_{\rm s}$	mass flux solids,	$kg m^{-2} s^{-1}$
h	pressure head; i.e. equivalent to height of liquid,	m
H	height of channel, or vessel,	m
$H_{\rm i}$	height of suspension at some time,	m
$H_{\rm o}$	original height of suspension,	m
k	permeability to fluid flow,	m^2
L	length of pipe or bed,	m
$m_{\rm i}$	mass fraction within a size range, or increment,	-
m_{p}	mass of particle,	kg
N	mass concentration of particles,	kg m ⁻³
$N_{\rm o}$	original mass concentration of particles,	kg m ⁻³
$P_{ m H}$	Heywood settling factor, see page 50,	\mathbf{m}^{-1}
Q	volume flow rate,	$m^{3} s^{-1}$
Q_{H}	Heywood settling factor, see page 50,	$m s^{-1}$
R	shear stress,	$kg m^{-1} s^{-2}$
$R_{\rm m}$	filter medium resistance,	m ⁻¹
r	radial coordinate.	m
$r_{\rm c}$	radial position of cake in filtering centrifuge,	m
$r_{\rm cr}$	start radius for critical particle size,	m
R_{f}	recovery of flow to underflow of hydrocyclone,	-
$r_{ m L}$	inner radial position of liquid in a centrifuge,	m
$R_{\rm o}$	equilibrium orbit radius,	m
$r_{\rm o}$	radius of a centrifuge,	m
$r_{\rm t}$	target radius,	m
$R_{\rm b}$	bubble radius,	m

$S_{ m v}$	specific surface area per unit volume,	$m^2 m^{-3}$	
\boldsymbol{S}	slurry concentration by mass fraction,	-	
t	time,	S	
U	interstitial velocity,	$m s^{-1}$	
и	fluid velocity,	$m s^{-1}$	
U_{b}	bubble velocity,	$m s^{-1}$	
$u_{\rm g}$	gas velocity (can include entrained solids with no slip),	$m s^{-1}$	
$U_{ m mf}$	minimum fluidising velocity,	$m s^{-1}$	
U_{o}	superficial velocity,	$m s^{-1}$	
U_{p}	particle velocity,	$m s^{-1}$	
$U_{ m r}$	radial gas velocity,	$m s^{-1}$	
$u_{\rm r}$	radial velocity,	$m s^{-1}$	
$u_{\rm s}$	solids velocity with slip $(u_s < u_g)$,	$m s^{-1}$	
U_{t}	terminal settling velocity,	$m s^{-1}$	
U_{0}	angular gas velocity,	$m s^{-1}$	
u_{θ}	tangential velocity,	m_s^{-1}	
V	volume of fluid,	m^3	
W	channel width,	m	
X	particle diameter,	m	
\overline{x}	mean particle diameter,	m	
\overline{x}_{i}	mid-particle diameter within a size range, or increment,	m	
x_{Sv}	Sauter mean diameter,	m	
Z	height, or axial distance, coordinate,	m	
$z_{\rm s}$	stop distance,	m	
Greek			
α	specific resistance of filter cake,	$m kg^{-1}$	
$lpha_{ m f}$	packing density of fibres,	-	
$\alpha_{\rm s}$	volume fraction of liquid in spray tower,	_	
ΔP	pressure difference, or drop,	$kg m^{-1} s^{-2}$	
ε	void fraction, voidage or porosity,	-	
η	particle removal efficiency,	-	
$\eta_{ m s}$	single fibre, or target, particle removal efficiency,	-	
λ	bed filtration constant,	\mathbf{m}^{-1}	
μ	fluid viscosity,	$kg m^{-1} s^{-1}$	
ρ	fluid density,	kg m ⁻³	
$ ho_{\!\scriptscriptstyle b}$	bulk density,	kg m ⁻³	
$ ho_{ m m}$	mean suspension density,	kg m ⁻³	
$ ho_{ ext{s}}$	solid density,	kg m ⁻³	
σ	normal stress,	$kg m^{-1} s^{-2}$	
τ	shear stress,	$k_0 m^{-1} s^{-2}$	
ω	angular velocity,	s s	