
5  Dilute systems 
 
This chapter considers the behaviour of a single particle suspended in 
a fluid. In practice, the equations and principles described are used to 
understand how a number of particles behave, provided that the 
concentration is sufficiently low enough to ensure that the behaviour 
of the particle under consideration is not significantly interfered with 
by the presence of other particles. Applications of the principles 
covered include particle size analysis by sedimentation methods; 
where the settling rate is related to the size of the particle, and the 
industrial process of clarification by sedimentation: in which particles 
are removed from a fluid stream by allowing sufficient time for the 
particles to settle. 

5.1 Weight, drag and Particle Reynolds number 

All forces must reduce to Newton's basic equation 

 maF =  

Forces either cause particle motion in a fluid, or resist it. A force 
balance can be written using all the forces described, or some of these. 
The easiest force to appreciate is the particle weight, but this is just 
one example of a field force. The particle weight is the product of its 
mass and the gravitational acceleration. Particles are usually too 
small to weigh; hence the particle diameter is used to calculate the 
volume, which is then multiplied by the density to give the mass. 
Thus, for a spherical particle, the particle weight is (in Newtons) 
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However, the particle will experience an upward force, in accordance 
Archimedes’ principle, which numerically is 
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Hence, combining equations (5.1) and (5.2) provides the buoyed 
particle weight 
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Before considering other field forces it is illustrative to conduct a 
simple force balance to see the application of this approach. In a fluid, 
particle weight will cause an acceleration that will be resisted by fluid 
drag. When the fluid drag force is equal to the particle weight the 
motion will be uniform; i.e. no longer accelerating and the particle 
will attain its terminal settling velocity. Fluid drag force comes from a 
suitable solution to the Navier-Stokes equation. However, this has 
only been achieved analytically under conditions of no turbulence 
within the fluid; i.e. streamlines of fluid flowing past the particle, as 

Archimedes’ principle 
States that when a body 
is wholly or partially 
immersed in a fluid it 
experiences an upthrust 
equal to the weight of the 
fluid displaced 

Fig. 5.1 Flow streamlines in 
fluid around a sphere 

Fig. 5.2 Streamlines and 
turbulences in a fluid around  
a sphere – at higher Re’ 
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illustrated in Figure 5.1. Under these conditions Stokes’ drag 
expression is valid 

µπUxF 3D −=        (5.4) 

which can be combined with equation (5.3) to provide an expression 
for terminal settling velocity (Ut), called Stokes’ law 
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In equation (5.4) the drag force is related to the particle velocity (U), 
for all values of velocity, whereas in equation (5.5) we are referring to 
the final (terminal) settling velocity of the particle in a static fluid 
after the period of acceleration (Ut). Clearly, the settling rate of a 
particle is a function of its size, solid density and physical properties 
of the suspending fluid. Equation (5.5) is only valid when the degree 
of turbulences within the fluid is negligible, see Figure 5.2. This is 
measured by The Particle Reynolds Number 
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where the threshold for streamline flow past the particle is believed 
to be about 0.2. The Particle Reynolds Number measures the ratio of 
inertial to viscous forces within the fluid; hence it is the fluid 
properties that should be used in it: fluid density and viscosity. At 
Particle Reynolds Numbers greater than 0.2 the degree of turbulence 
becomes more significant leading to an additional fluid drag force 
due to form drag. Hence, the terminal settling velocity will be lower 
than that predicted by Stokes’ law, equation (5.5), which considers 
only viscous drag around the particle.  

In common with fluid flow in pipes, it is possible to correlate a 
friction factor with Reynolds number for the case of fluid flow past a 
single spherical particle. This is illustrated in Figure 5.3. The friction 
factor is the shear stress in a plane at right angles to the direction of 
motion at the particle surface (R) divided by the fluid density and 
relative velocity between the particle and fluid squared. The drag 

force is the product of the shear stress and the 
particle area, which is the projected area to the 
fluid flow (Ap). In particle settling it is usual to use a 
drag coefficient (Cd), rather than friction factor, 
these are related as follows 
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where the fluid drag (FD) is 
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The projected area for a sphere is 
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Galileo (1564-1642) 
Galileo is credited with 
dropping different 
sized balls from the top 
of the leaning tower of 
Pisa to show that they 
fell at the same rate. 
This ignores air drag 
and Galileo knew better 
than this, he had 
worked on wind 
friction. Note that 
equation (5.5) is not 
valid for balls in air, but 
(5.11) is generally valid. 

exercise 5.1 
Determine the maximum 
particle size at which 
Stokes’ law should be 
applied for the data: 

solid density:   2500 kg m−3 

liquid density: 1000 kg m−3 
viscosity: 0.001 Pa s 
 i.e. use Re’=0.2 and 
substitute equation (5.5) in 
to (5.6). 
 

Fig. 5.3 The drag coefficient or friction 
factor plot for single spherical particles 
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Combining equations (5.7) to (5.9) provides 
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Equation (5.10) can be equated with (5.3) to provide a generally valid 
equation for the terminal settling velocity 
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However, equation (5.11) can only be used to predict terminal settling 
velocity if a value of the drag coefficient is known, see Figure 5.3. In 
the streamline flow region we know that  
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which can be substituted into equation (5.11) together with (5.6) to 
provide equation (5.5). Hence, the drag coefficient and Stokes’ law 
approach to particle settling are compatible. However, for Particle 
Reynolds numbers greater than 0.2 no single and simple analytical 
function, equivalent to equation (5.12), can be used. Many 
correlations have been suggested; all of them are valid over a 
restricted range of Particle Reynolds numbers. An alternative 
approach comes from considering the drag coefficient further 
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Equation (5.13) contains both settling velocity and particle size and 
cannot be used to give the drag coefficient from a diameter because 
the settling velocity is also required. However, multiplying by the 
Particle Reynolds number squared results in 
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The term in the square brackets contains neither particle diameter, 
nor settling velocity. Likewise, dividing Particle Reynolds number by 
the drag coefficient gives 
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Equations (5.14) and (5.15) can be written as 
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where both PH and QH are not dependent upon particle size or settling 
velocity. The friction factor correlation, Figure 5.3, can then be 
redrafted in these terms to give Figure 5.4. So, for the purposes of 
determining the settling velocity from a given particle diameter, 

equation (5.14) provides a value for CdRe’
2, Figure 5.4 is then used to 

find Re’/Cd and equation (5.15) to provide the settling velocity. 

Fig. 5.4 Modified drag and 
Reynolds number plot 
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In practice Figure 5.4 is not very easy to use: it is a logarithmic 
plot and the resolution reduces as a decade is approached. Thus it 
may be easy to read off an unambiguous value at 11, but difficult to 
read off a value at 90. To overcome this problem a set of tables was 
produced by Heywood, correlating log10(PHx) against log10(Ut /QH) 
and vice-versa, see the Appendix. Thus, in order to determine the 
settling velocity from a particle diameter, log10(PHx)  is first calculated 
and used to determine log10(Ut /QH)  from The Heywood Tables. This 
value is then anti-logged and multiplied by QH to give the velocity. 
Clearly, this procedure is only worth the extra computational effort 
when the settling is at Particle Reynolds numbers greater than 0.2. 
See the box on page 50 for an example of how to use the tables.  

The main advantage of the Heywood Tables approach, over 
empirical correlations between the Particle Reynolds number and a 
derived function of the drag coefficient, is that it is valid for all 
Particle Reynolds numbers. It is also possible to implement on a 
computer and is available via the Internet at: 
www.filtration-and-separation.com/settling 

An alternative popular correlation, using the Particle Reynolds 
number and The Archimedes (Ar) number, is 
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valid for 2<Re’<20 000, where The Archimedes number is closely 
related to equation (5.14) and is 
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Thus, to determine a settling velocity the Archimedes number is 
deduced from equation (5.17), followed by the Particle Reynolds 
number by equation (5.16) and hence the velocity from (5.6). 

5.2 Other forces on particles 

Field forces other than the gravitational include 
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electrical, thermophoretic (due to a temperature gradient), thermal 
creep (due to greater loss of molecules from the hotter side of a 
particle), and photophoretic (due to a light intensity gradient). The 
centrifugal field force is considered further in Chapter 8, electrical 
and thermophoretic forces in 14 and colloidal forces in 13. The inertial 
force (Fi) is the rate of change of momentum 
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note that the product of volume and particle density has been used 
for mass, assuming a spherical particle. 
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The fluid drag force may be subject to the mean free path correction, 
which is required when the particle size is comparable to the mean 
free path of the fluid. This is required because the particles can slip 
between the fluid molecules - effectively reducing the viscous drag. It 
is more prevalent when the fluid is a gas. The correction to the drag 
coefficient is 
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where λ is the mean free path length of the gas. For air λ=0.1 µm 
(approximately) so the error in assuming the Stokes drag term is 17% 

for a 1 µm particle and 170% for a 0.1 µm particle settling in air. 
When particles come to rest on each other, or a surface, there is a 

solids stress gradient, or reaction force. This force can be rationalised 
by considering when a particle is at rest at the base of a vessel, as it 
experiences no drag or inertia, but still possesses a weight (field) 
force. This force must be balanced as the particle does not accelerate. 
The reaction force is due to a pressure, or stress gradient, exerted 
from the vessel base. 

5.3 Particle acceleration in streamline flow 

In the derivation of equations (5.5) and (5.11) the drag force was 
equated to the gravitational field force, to determine the terminal 
settling velocity of the particle. This simple force balance is only valid 
if the particle inertial forces can be neglected. Therefore, the time 
taken to reach the terminal settling velocity, or 99% of it, is a useful 
check on the validity of the simple force balance used to derive these 
equations. A force balance of the apparent mass (buoyed mass), drag 
and inertia for a spherical particle is 
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where mp is the actual particle mass, not buoyed mass. Equation (5.21) 
can be rearranged to give 
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i.e. the equation for the terminal settling velocity. 
Therefore, 
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We need to integrate equation (5.24) to find time taken to reach a 
given velocity, or fraction of terminal settling velocity. The equation 
can be rearranged to give 
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Brownian motion 
When small particles 
are suspended in 
liquids, they are 
subject to molecular 
bombardment giving 
rise to Brownian 
motion. Hence, finely 
divided particles may 
not settle. In practice, 
particles smaller than 

2 µm suspended in 
water will settle 
slower than predicted 
by Stokes’ law and 
particles less than 1 

µm might not settle at 
all. 
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i.e. a mathematical relation of the form: 
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the constant of integration is zero. Hence, 
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where the actual mass of particle is mp: 
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On considering equation (5.25) it should be apparent that the particle 
will never reach its terminal settling velocity: it asymptotes to this 
value. However, most small particles that are encountered within 
Particle Technology will reach 99.9% of their terminal settling 
velocity within a very short acceleration time. See Figure 5.5 for an 
illustration of this. 

5.4 Settling basin design (Camp-Hazen) 

Figure 5.6 illustrates the principle behind continuous settling basin 
design, using a rectangular clarifier. The feed flow enters the vessel 
on the left and plug flow conditions are assumed, with treated 
effluent leaving on the right of the vessel. Whilst inside the vessel 
particles sediment and if they reach the base of the vessel, before 
being removed in the effluent, then the particles are assumed to stick 
to the base and be removed from the liquid. Hence, the vessel design 
requirement is to allow sufficient residence time within the vessel to 
provide adequate particle removal. The design is based on the critical 
trajectory model: where a particle size is selected and a balance 
undertaken equating the time taken for the particle to settle the full 
basin height, and the residence time within the basin assuming plug 
flow. The resulting simple vector analysis of the trajectory is a 
straight diagonal line: starting at the top left of the vessel and 
finishing at the bottom right. All particles of this size will be 
collected; as those starting their trajectory from further down than the 
full vessel height (H) will follow a parallel trajectory to the critical 
and, therefore, reach the vessel base before the full vessel length (L). 
The time taken to settle will be 
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and the residence time, assuming plug flow, is 
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Fig. 5.5 Time taken to reach 
99.9% of terminal settling 
velocity – for the conditions 
illustrated 

Fig. 5.6 Critical trajectory 
model for continuous 
settling basin design 
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where W is the vessel width (i.e. residence time is vessel volume 
divided by volumetric flow rate). Equating these two times, 
cancelling and rearranging provides 
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The product of the vessel length and width is the plan area. Hence, for 
complete removal of particles of a given size, the volume flow rate 
divided by the corresponding terminal settling velocity is equal to the 
plan area for the complete removal. If the plan area is too small then 
not all the particles of the selected size will be removed. In settling it 
is always the plan area that is the important design parameter and 
not the vessel cross-sectional area. This important fact will be met 
again and in all cases the provision of a too small plan area will result 
in incomplete settling, or particle removal. 

Further consideration of equation (5.28) and (5.5) provides an 
indication of the efficiency of removal of particles smaller than the 
critical size. All particles larger than the critical will sediment out in 
the available time, and the fraction of smaller ones removed will be 
directly proportional to the settling velocity – assuming that the feed 
flow is in fact uniformly distributed over the height of the vessel and 
not all entering the vessel at the top. Hence, particles half the critical 
size will only be collected with 25% efficiency because the settling 
velocity is proportional to the particle diameter squared. 

5.5 Laboratory tests 

Practical laboratory tests to deduce settling parameters for the design 
of industrial clarifiers involve the short tube and long tube tests. Figure 
5.7 illustrates the long tube test, where the suspension is allowed to 
settle within the tube for a set time and the contents above a sample 
point are drained off. The concentration above the sample point is 
determined by weighing and drying. For each height it is possible to 
plot the concentration remaining in suspension against inverse time, 
as illustrated in Figure 5.8. It may be possible to extrapolate this plot 
to an inverse time value of zero; which will represent the 
concentration of unsettlable solids. These are fine particles that 
remain suspended due to molecular bombardment, or colloidal 
repulsion forces. Assuming a plot similar to Figure 5.8 provides a 
suspended solids concentration that is acceptable for an effluent from 
a continuous clarifier, then the required settling time and height of 
the sample point (measured downwards from the suspension top), 
are used in the following equation for vessel plan area 
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where EA is an area efficiency to take into account turbulences, poor 
flow distribution, etc. within the vessel. 

Fig. 5.7 The long tube test 

Fig. 5.8 Results from long 
tube test 
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5.6 Summary 

The settling velocity of small particles may be reliably obtained from 
Stokes’ law. Larger particles, however, do not obey Stokes’ law. 
Alternative correlations between drag coefficient and Particle 
Reynolds number do exist – but the settling velocity is a constituent 
of the Particle Reynolds number; hence the answer needs to be 
known before the appropriate equation to use can be identified! To 
overcome this problem Heywood published a set of tables that can be 
used over a wide range of settling velocities and particle sizes.  
The single particle settling discussed in this chapter is widely used in 
engineering calculations. For example, within a spray drier trajectory 
analysis is often performed using the drag coefficient and the 
difference in velocity between the particle and the gas is of use in 
mass transfer calculations. Single particle settling also forms the basis 
for understanding the behaviour of more concentrated dispersions, 
which is the subject of the next chapter. 

5.7 Problems 

1. 
i). A solid and liquid has a specific gravities of 2.8 and 1.0, 
respectively and the liquid viscosity is 0.001 Pa s, the value of the 

function PH is 2.87x10
4 m−1, the value for QH is (SI units): 

a:  2.87x10−2 b:  2.87x104 c:  2.87 d:  0.490 
 
ii). The SI units of the function QH are: 

a: m−1 b: m s−1 c: m s−2 d: s m−1 
 
iii).Use the Heywood Tables to complete the following: 

Particle diameter (µm): 1 10 50 100 1000 

log(PHx): ------ ------ 0.   

log(Ut/QH): ------ ------    

Settling velocity* (m s−1) ------ ------    

Stokes’ settling velocity (m s−1):      

* settling velocity using the Heywood Tables 
 
iv). Why should the Stokes’ settling velocities of the larger particles 
always be greater than those found in practice (and given by the 
Heywood Tables)? 
 
 

v). The Particle Reynolds is defined as 
µ
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which should be below some threshold for Stokes’ law to be 
applicable. The maximum particle size at which Stokes’ law is 

applicable for the above system is (µm): 
a:  59 b: 5900 c:  127 d:  1271 

Heywood Tables 
(see Appendix) 
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Both functions are size 
and velocity independent. 
When calculating the 
settling velocity given a 
particle diameter (x) the 
value of log(PHx) is first 
calculated. Then the first 
two significant figures of 
log(PHx) are given by the 
first column of the table, 
the second and third 
come from the scale given 
at the top of the table (the 
first row). The 
corresponding value of 
log(Ut /QH) is then read or 
estimated from the table 
and converted into a 
value for Ut using the 
calculated function QH. 
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2. 
i). See the continuous settling basin on the right. What will be the 
trajectory of particles the same size as the critical particle size, but 
which start their descent from a height less than H ? 
 

ii). The solid and liquid densities are 2900 and 1000 kg m−3, the 

viscosity is 0.001 Pa s and the critical particle diameter is 50 µm, the 

terminal settling velocity (Ut) is (m s−1): 

a:  2.6x10−3 b:  2.6x10−5 c:  2.6x10−1 d:  0.52 
 
iii). The Particle Reynolds number is: 
a:  0.26 b: 129 c:  0.129 d: 0.00013 
 
iv). An expression for the critical particle residence time vertically (tv ) 
is (s): 

a:  ULt /v =  b: UHt /v =  c: vHt /v =  d: ULt /v =  

 
v). An expression for the critical particle residence time horizontally  
(th ) is (s): 

a:  QLWHt /h =  b: QHt /h =  c: ULt /h =  d: LWHQt /h =  

 
vi). An expression for LW is (SI units): 

a:  QULW /=  b: UQLW /=  c: UHQLW /= d: HUQLW /=  

 
vii). What are the units of LW, and what does it represent? 
 

viii). If the volume flow rate into the basin is 10 m3 min−1 the 
minimum settling area required to remove all particles of the 

diameter given in Part (ii), and bigger, is (m2): 
a:  6.4 b:  64 c:  640 d:  6400 
 
3. 
i). An effluent containing a mineral in suspension with solid and 

water densities of 2600 and 1000 kg m−3, respectively, is pumped into 
a batch vessel 5 m high and left for 30 minutes prior to discharge into 
a river. The viscosity of water is 0.001 Pa s. The maximum particle 

diameter that will be in the discharge is (µm): 
a:  3180 b:  56.4 c:  90 d:  66.4 
 
ii). The effluent solid has the following particle size distribution:  
Cumulative mass undersize (%): 100 92 80 62 48 31 18 8 4 0 

Particle diameter (µm): 90 80 70 60 50 40 30 20 10 0 

 

If the initial concentration of the effluent before settling was 60 mg l−1, 
the concentration of solids below the size calculated in your answer 

in Part (ii) (the critical size) is (mg l−1): 
a:  60 b:  43.2 c:  34.2 d:  25.8 

In the Camp-Hazen 
settling basin model the 
feed to a basin is 
assumed to enter well 
mixed and distributed 
evenly over the full 
depth of the vessel. The 
critical trajectory is given 
by a particle of a certain 
(critical) size that enters 
the basin at the top left 
and has just settled by 
the end of the basin 
length - bottom right. 
The critical trajectory will
be a straight line. 
Particles smaller than the 
critical size will also have
a straight line trajectory 
but one that does not 
intercept with the base 
by the time the fluid 
element has reached the 
end of the basin. 
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This represents a 'worst case' estimate of the concentration in the 
effluent discharge after settling, as it assumes that no solids smaller 
than the critical size settle in the allowed time. 
 
iii). Of the concentration of solids below the critical size a 
considerable fraction will also have settled out. The amount settled 
out at each particle diameter is proportional to the ratio of its settling 
velocity compared to the velocity of the critical particle. For example, 
a particle with a settling velocity half that of the critical particle will 
travel 2.5 m in the allowed 30 minutes and, if we assume the 
suspension was homogeneous before settling, half of the solids at that 
diameter will settle out. Complete the following table: 
 
Diameter (µm): 70 60 56.4 50 40 30 20 10 0 

Fraction settled at 
size: 

 
1.00 

        

 
Fraction undersize: 

 
0.80 

 
0.62 

 
0.57 

      

 
iv). Now, to estimate the amount of material settled below the 
critical size a plot of fraction of particles settling in allowed 
time against fraction of material undersize is made and the 
area under the curve is calculated by graphical means. Plot 
these on the left. 
 
 
The area under the curve is: 
a:  0.133 b:  0.265 c:  0.53 
 

 
This represents the fraction of the total distribution below the critical 
size but which still settles because the particles still reach the base of 
the vessel in 30 minutes. Add this fraction to the fraction of material 
in the size distribution above the critical size (which has all settled 
out). See your answer to Part (ii) to help you find this. NB the next 
question does not want the fraction settled – it asks for the effluent 
concentration going to discharge. 
 

v). Hence, the concentration in the effluent discharge is (mg l−1): 
a:  9.1 b:  43.2 c:  34.2 d:  18.3 
 

vi). If the effluent discharge consent limit is 20 mg l−1, will you be able 
to discharge this suspension? 


