
3  Fluid flow in porous media 
 
In Chapter 2 we considered how to represent a particle size 
distribution by, where possible, a single term that is representative of 
all the particle sizes. This term may then be used for modelling, 
design or simply to understand a process within Particle Technology. 
One such example is in the fluid flow through a porous medium, or 
porous media (plural). There are a number of practical applications of 
fluid flow, including filtration, flow in a packed column, permeation 
of water, or oil, within the matrix of a porous rock, etc. Before 
discussing the consequences of our choice of a single value to 
represent the distribution, and the appropriate modelling equations, 
we must define the commonly used terms. 

3.1 Definitions 

By definition, a porous medium consists of pores between some 
particulate phase, contained within a vessel, or some control volume, 
as illustrated in Figure 3.1. The fluid flow rate through the bed is Q 
(m3 s−1) and the bed cross sectional area is A (m2). Thus the superficial 
(or empty tube) velocity U0 is the total flow rate divided by the cross 
sectional area. The existence of the particles within the bed will 
reduce the area available for fluid flow; i.e. to preserve fluid 
continuity with the entering superficial flow the fluid will have to 
squeeze through a smaller area; hence the velocity within the bed (U – 
interstitial velocity) will be greater than the superficial. In Particle 
Technology calculations it is the volume fraction that is most 
important, and not the mass fraction. The volume fraction of solids 
present (i.e. volume solids in bed divided by total bed volume) is 
usually referred to simply as the volume concentration, or solids 
fraction, and the remaining fraction is that of the voids. The void 
fraction is also called the voidage and the bed porosity. It is important 
to realise that, in liquid systems, the voids are usually filled with 
liquid and not to assume that the bed consists of just solids and air. 
The porosity is usually an isotropic property (i.e. the same in all 
directions); hence, the interstitial velocity is simply related to the 
superficial velocity by the following expression, which comes from a 
consideration of fluid continuity. 
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Clearly, the resistance to fluid flow through the porous medium is 
related to the amount of particles present, or volume concentration, 
but it is conventional to work in terms of bed porosity. At one 
extreme, when the bed is full of solids (porosity is zero – possible 
with cubic particles placed carefully within the bed) the resistance is 
infinite. At the other, when no solids are present and the porosity is 
unity, the interstitial velocity will be the same as the superficial 
velocity. The resistance to fluid flow gives rise to a pressure drop in 

Fig. 3.1  Illustration of 
fluid flow through a 
porous medium and 
consideration of the 
volume fractions present 

exercise 3.1 
Using continuity:  
i.e. Q = constant, 
deduce equation (3.1)  
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the fluid (∆P). Pressure is not a vector quantity, but a pressure 
gradient with respect to distance (∆P/L) is. The pressure decreases in 
the direction of the fluid velocity, hence the pressure gradient should 

be negative: (-∆P/L). However, for the sake of brevity, we will adopt 
the term pressure difference, which is a scalar quantity, hence the 
negative symbol will not be used in the following text. 

The porosity of a packed bed of material depends strongly upon 
the nature of the particles and how the bed has been treated. 
Incompressible glass beads, including marbles, pack to a porosity of 
about 45%, but beds of alumina particles (not catalyst pellets) often 
reach porosities of 75%. Biological material, such as yeast cells, may 
form a packed bed with porosities of 90%, or higher. Therefore, it is 
dangerous to make the common assumption that packed beds are 
50% solids and 50% voids. It is a simple parameter to measure, so 
long as the solid and fluid densities are known; see the box on the 
left. 

3.2 Flow regimes 

On page 1 the flow Reynolds number was stated. In a porous 
medium, as with all fluid flow problems, we need to consider energy 
losses from the fluid due to viscous and form drags. The former can 
be simply referred to as laminar flow (low Re) whereas turbulent 
flow has additional drag due to eddies in the fluid within the porous 
medium. The Modified Reynolds number is used to determine the flow 
regime of the fluid within the porous medium. Modification to the 
fluid velocity term (u) and the characteristic linear dimension (d) are 
required. When considering flow within the bed the appropriate 
velocity is the interstitial, hence u = U, which can be related to the 
superficial velocity by equation (3.1).  The characteristic linear 
dimension was deduced by Kozeny and is the volume open to the 
fluid flow divided by the surface area over which it must flow (i.e. 
product of volume of solids and specific surface area per unit 
volume) 
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Thus, equations (3.1) and (3.2) used in the Reynolds number 
expression give the Modified Reynolds number (Re1) 
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Conceptually, the number still represents the ratio of inertial to 
viscous forces in the fluid and provides a means to assess when the 
inertial effects become significant. The conventionally applied 
threshold to indicate significant turbulence is 2, whereas for the flow 
Reynolds number (page 1) the conventional threshold is about 2000. 
It is important to note that the density term in equation (3.3) is the 
density of the fluid: the turbulences described are that of the fluid, 
the particles do not move in a packed bed. 

Measuring porosity 
For a dry powder in air: 
fill a weighed 
measuring cylinder to a 
graduation, gently 
vibrate and reweigh. 
The bed mass over 
volume will give the 

bulk density (ρb) of the 
powder: 
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As the fluid is a gas, its 
contribution to the bulk 
density is minimal and 
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3.3 Darcy’s law and the Kozeny-Carman equation 

Darcy’s law, and the Kozeny-Carman equation, are valid for laminar 
flow (Re1<2); i.e. for viscous drag by the fluid on the surface of the 
particles within the bed. The analogy with electrical flow is shown in 
Figure 3.2. A cell, or pump, provides the driving potential and the 
flow, in either system, depends on the resistances in the circuit. For 
two equal resistances, the potential, or pressure, is equally divided 
between the two. In fluid flow, high resistance is provided by high 
fluid viscosity (treacle is more difficult to pump than air) and by low 
permeability (k) of the bed. A value of zero permeability would give 
rise to infinite resistance – both for electrical and fluid flow. Darcy’s 
law1 is 
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where V is the volume of fluid flowing in time t. For a given bed 
length the pressure drop will rise linearly with volume flow rate, or 
fluid velocity, noting that 
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as illustrated in Figure 3.3. The permeability of a packed bed can be 
measured in this way, using the gradient from such a plot. The 
permeability is often assumed to be a constant in a packed bed, 
provided the particle packing is also uniform within the bed. It 
should, therefore, be an intrinsic property of a material. However, in 
order to use equation (3.4) for design, e.g. to specify a pump required 
to pass liquid through a bed at a desired flow rate, we need a method 
for predicting the permeability of the bed. This is provided by the 
Kozeny-Carman equation. 

The Kozeny-Carman equation was derived from the Hagen- 
Poiseuille equation for laminar flow of a fluid in a circular channel 
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where d is the channel diameter. The derivation assumed that flow in 
a porous medium can be represented as flow through many parallel 
channels and equations (3.1) and (3.2) were used to represent the 
equivalent channel diameter and to convert between the fluid 
velocity within the channel and the superficial. Hence, substituting 
these equations in (3.6) and collecting the constants together in a 
single term called The Kozeny constant (K), which includes a factor 
relating the tortuous flow channel length to the measured bed depth 
gives the Kozeny-Carman equation 
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1 Darcy observed the law during the 1850’s by monitoring pressure drop over 
sand filters at Dijon, France. 

 

Fig. 3.2 Analogy between 
fluid and electrical flows 
The flow rate (current or 
fluid) is proportional to 
the driving potential: 
voltage in Ohms law and 
pressure gradient in a 
fluid. The constant of 
proportionality is 
resistance (R) – which for 
a fluid is viscosity 
divided by bed 
permeability (k). 

Fig. 3.3 Graphical 
representation of Darcy’s 
law for a bed of fixed 
overall length 
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Comparison of equations (3.4) and (3.7), results in the conclusion that 
the Kozeny-Carman equation is simply a subset of Darcy’s law, with 
an analytical expression for permeability. There are many alternative 
expressions for permeability, but the Kozeny approach is the most 
frequently encountered. In many instances the Kozeny constant has a 
value close to 5, but this is not universally true. Inspection of 
equation (3.7) shows that the permeability, or inverse resistance to 
fluid flow, is dependent upon the bed porosity (or solids 
concentration) and the specific surface area per unit volume of the 
particles within the bed. This is logical because the higher the bed 
surface area the greater the viscous drag of the fluid on the particles. 
Equation (2.14) can be substituted into (3.7) to provide a version of 
the equation in terms of particle size 
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where xSv is the Sauter mean diameter for the particle distribution. On 
page 6 and 7, the question ‘which particle diameter to use to 
represent the distribution?’ was asked and Figure 2.2 provided an 
example distribution. The x50  and xSv for this distribution are 9.2 and 

6.4 µm, respectively. The consequence of using an inappropriate 
equivalent spherical diameter can be illustrated by using both of 
these diameters in equation (3.8) and comparing the results. Under 
identical flow conditions, the ratio of pressure drops calculated by the 
Sauter mean to that by the median particle size is 2:1; i.e. there is 
100% difference between the pressure drops calculated by these 
diameters; yet both are equivalent spherical diameters for the same 
particle size distribution. Clearly, the Sauter mean is the most 
appropriate diameter to use, as indicated in equation (3.8), but it is a 
calculated value and the median is quick to read off the cumulative 
distribution curve. Hence, there is great temptation to use the 
median, but it would predict only 50% of the likely pressure drop.  

3.4 Friction factor 

When turbulences within the fluid flowing through the 
porous medium become significant, i.e. Modified 
Reynolds numbers greater than 2, additional drag terms 
to the viscous ones quantified in the last section become 
important. In fluid flow through pipes and channels a 
friction factor was deduced to represent this region and 
Carman extended the analogy with pipe flow to cover 
both flow regions in porous media. The porous media 
friction factor is illustrated in Figure 3.4 and the method 
used to relate the shear stress at the surface of the 

solids, to the pressure drop, follows (the same 
approach for flow in pipes is included in the box 
overleaf for comparison). 

Fig. 3.4 The friction factor plot for fluid 
flow through porous media 

Permeability 
Comparing equations 
(3.4) and (3.7) the 
permeability is 
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hence the SI unit is m2. 
The Kozeny constant is 
often 5, but there is 
much experimental 
evidence to suggest that 
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i.e. the Kozeny 
coefficient is a function 
of porosity. 
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Equation (3.9) is the friction factor and R is the shear stress, or drag 
force per unit area, on the particle surface. A force balance at the 
particle surface can be constructed as follows.  

 surface area of particles= LAS )1(
v

ε−   (m2)  

 drag force = R. particle surface area   (N)  
and 

 pressure drop on fluid= P∆    (N m−2)  

 force by fluid= εPA∆     (N)  

Equating the two forces and rearranging gives 
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Note that equation (3.10) is the analogue of that provided for pipe 
flow in the box. Finally, expanding into a friction factor, equation 
(3.9), together with equation (3.1) gives 
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Alternatively, the pressure drop per unit length is 
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where the bracketed term is the friction factor. So, given a flow rate, 
hence superficial velocity, it is possible to calculate the Modified 
Reynolds number from equation (3.3) and the friction factor from 
Figure 3.4. This can then be used in equation (3.12) to provide the 
pressure drop, or gradient, under conditions of laminar or turbulent 
flow through the porous medium. 

3.5 Carman and Ergun correlations 

The friction factor plot, with Reynolds number, for fluid flow through 
porous media is a smoother function than that found in pipe flow. 
This is due to the smooth increase in turbulences within the bed as 
flow rate increases. Thus the friction factor plot can be represented by 
just one, or two, empirical curves. The Carman correlation is 
generally used for solid objects forming a bed 
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The Ergun correlation is for hollow objects, such as packing rings 
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The form of both equations is similar: with a correction term added to 
the laminar flow term to account for resistance due to turbulences. 

Force balance on a pipe 
wall  

(for pure fluid – no 
particles) 

 
force on wall: 
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force on fluid: 
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c.f. equation (3.10) 

Laminar flow 
Carman correlation 
without the turbulent 
correction is 
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Using equation (3.10) and 
(3.3) provides 

...
2

o

1

)1(
v

3
=

∆
− UL

P

S ρε

ε
 

o

v
)1(

...
U

SK

ρ

µε−
=  

So, 

o3

2

v

2
)1(

U
SK

L

P











 −
=

∆

ε

ε
µ

 
i.e. equation (3.7) 
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This is illustrated in the box, which shows that the Carman 
correlation reduces to the Kozeny-Carman equation, with K=5, when 
the turbulent correction term is dropped.  

In practice, when performing flow calculations with Modified 
Reynolds numbers greater than 2, equations (3.13) or (3.14) are used 
to determine the friction factor – rather than Figure 3.4, and equation 
(3.12) is used to calculate the pressure drop. 

3.6 Concentrations by mass and volume 

Solid concentration by volume fraction (C) was illustrated under 
Figure 3.1 and is simply the volume of solids present divided by the 
total bed volume. It is numerically equal to unity minus bed porosity. 
In most of the following chapters, it is more convenient to work in 
terms of solid concentration rather than porosity. However, 
laboratory analyses often provide solid concentration by mass. For 
example, taking a sample of a filter cake containing water: weighing, 
drying and then weighing the dried cake will provide the 
concentration by mass – if the last mass is divided by the first. Hence, 
conversion between the two different types of concentrations is 
frequently required. 

Consideration of what the solid concentration by volume fraction 
means leads to the following expression 

fluid  volumesolids  volume

solids  volume

+
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If a sample has resulted in a concentration by mass (Cw), and the total 
sample mass is M, then the volumes present can be deduced if the 
densities of the solid and fluid are known by 
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Dividing through by the volume of solids gives 
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A similar argument can be applied to convert from concentration by 
volume fraction to mass fraction. 

3.7 Summary 

In this chapter we have seen the importance of specific surface: it 
defines the surface area that is present within a porous medium; and 
it is the friction of fluid flowing over that area that causes a pressure 
drop. Finer particles provide a higher surface area per unit volume 
than coarser ones, therefore, a higher flow resistance. Turbulences 
within the fluid inside the bed, at higher flow rates, cause an 
additional flow resistance, or pressure drop. Thus, a calculated 
pressure drop by a laminar flow equation, Darcy’s law or Kozeny-
Carman, will always underestimate the true pressure drop if 
significant turbulence is present. Often the temptation to use Kozeny-

Packing arrangements 
Uniform spheres, packed 
together in a regular 
pattern, vary from a co-
ordination number of 6, 
for simple cubic packing, 
to 12 for hexagonal close-
packed; which is the 
closest possible packing 
for uniform spheres. The 
solids concentration for 
these arrangements varies 
from 0.524 to 0.740, 
respectively (porosities of 
0.476 to 0.260). Randomly 
packed spheres have a 
solid concentration of 0.50 
to 0.60. In theory, with a 
size distributed solids the 
finer particles could fit 
inside the gaps between 
the larger particles 
providing even higher 
solid packing. In practice, 
solid concentrations much 
lower than the regular 
packed arrays are found. 
It is always safest to 
measure concentration, or 
porosity, as described on 
page 22. 
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Carman, rather than the procedure described in Sections 3.4 and 3.5, 
is too great even when the Modified Reynolds number is high. This 
will lead to an under-design, or specification, for equipment such as 
pumps and fans. Providing another example of the failure in design 
discussed in the Forward. 

Even under conditions of laminar flow, the use of the median size 
to respresent the size distributed solids rather than the Sauter mean 
diameter can cause significant errors, as shown in Section 3.3. Finally, 
a brief consideration of particle packing arrangements has been 
included, but in most processes the packing arrangement is random 
and not structured. Hence, the safest procedure for the analysis of a 
flow through porous media problem is to conduct experiments to 
deduce characteristics such as the permeability and if it varies with 
flow; a possibility if the finer particles become transported within the 
bed or if suspended solids within the fluid deposit inside the bed. 
The latter is depth filtration, which is covered in the next chapter. 

3.8 Problems 

1. 

(i) A powder is contained in a vessel to form a cylindrical plug 0.8 

cm in diameter and 3 cm long. The powder density is 2.5 g cm−3 and 
2.20 grams of powder was used to form the plug. The porosity inside 
the plug of powder is (-): 
a:  0.58  b:  0.42   c:  0.75  d:  0.25 
 

(ii). Air was drawn through the plug at a rate of 6.6 cm3  per minute. 
A mercury manometer was used to measure the pressure drop 
during this process: a pressure drop of 60 mm Hg was recorded. The 
specific gravity of mercury is 13.6, thus the pressure drop across the 
plug was (Pa): 
a:  80  b: 800   c:  8000  d:  80000 
 

(iii). The superficial gas velocity in (ii) was (m s−1): 

a:  0.0022 b:  3.65x10−5  c:  2.2x10−6 d:  0.00365 
 

(iv).The viscosity of the air was 1.8x10−5 Pa s, using the Kozeny-
Carman equation, the specific surface area per unit volume of the 
powder was (m-1): 

a:  2310  b: 3.0x1011  c:  5.5x105 d:  1.2x106 
 

(v).  The Sauter mean diameter of the powder was (µm): 
a:  2600  b:  22   c:  11  d:  5.0 
 

(vi). The air density was 1.2 kg m−3, the Modified Reynolds Number 
of the system was (-): 

a:  0.10  b:  8.4x10−10  c:  4.6x10−4 d:  0.00021 

Equation summary 
Under laminar flow: 
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where K is the Kozeny
constant At high values of
the 'Modified Reynolds
Number' (Re1>2): 
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turbulent conditions
pertain. A pressure drop
given a flow rate can still
be deduced, but first the
Modified Reynolds number
is required, then the
friction factor using say the
Carman correlation: 
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A force balance on the
surface of the solids and on
the fluid gives: 
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where L is the bed height 
or depth. Given a value for 
the shear stress on the 
solids (R) calculated from 
the Carman correlation 

then the pressure drop (∆P) 
can be calculated from the 
force balance. 
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(vii). Comment on whether your use of the Kozeny-Carman equation 
was valid or not: 
 
 
 
 
2. 
(i). A cylindrical ion exchange bed composed of spherical particles 2 
mm in diameter packed at a bed voidage of 0.45 is to be used to de-

ionise a liquid of density and viscosity 1100 kg m−3 and 0.0075 Pa s 

respectively. The design flow rate is 5 m3  hour−1 and the bed height 
and diameter are 2 and 0.2 m respectively, using the Kozeny-Carman 
equation the pressure drop is (Pa): 

a:  99000 b:  1.32x107 c:  4400  d:  44000 
 
(ii). The Modified Reynolds Number is: 
a:  3.91  b:  4.78  c:  1290  d:  0.478 
 
(iii). Comment on your use of the Kozeny-Carman equation: 
 
 
 

(iv). The interstitial liquid velocity inside the bed is (m s−1): 
a:  0.020  b:  0.098  c:  0.08  d:  0.044 
 
(v). Using the Carman correlation the shear stress on the ion 
exchange beads is (Pa): 
a:  17.2  b:  3.5  c:  13.5  d:  27.0 
 
(vi). Hence the dynamic pressure drop over the bed is (kPa): 
a:  84  b:  130  c:  99  d:  150 
 
(vii). Why is the answer to (vi) different to that in (i)? 
 
 
 
 
(viii). If the liquid has a datum height equal to the position at the base 
of the ion exchange vessel and, therefore, needs raising to the top of 
the column before it enters the ion exchange bed the additional 
pressure drop to effect this, i.e. the static pressure drop over the bed, 
is (kPa): 
a:  2.16  b:  21.6  c:  216  d:  0.22 


