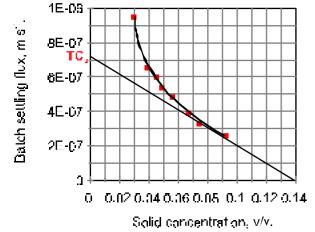
THICKENER DESIGN

A continuous thickener is to be designed to deal with the effluent from the last question. It will treat 1000 m^3 per day of suspension fed at 3% v/v solids concentration and is to discharge underflow at 13.8% v/v solids. Use the settling curve and the following relation:


$$C_0 H_0 A \rho_s = C_1 H_1 A \rho_s$$

Concn (v/v):	0.03	0.039	0.045	0.049	0.056	0.067	0.074	0.092
Height for H_1 (cm)	28	21.5	18.7	17.1	15	12.5	11.4	9.1
Velocity (m s ⁻¹):	3.2x10 ⁻⁵	1.7×10^{-5}	1.3x10 ⁻⁵	1.1×10^{-5}	8.6x10 ⁻⁶	5.8x10 ⁻⁶	3.5x10 ⁻⁶	2.1x10 ⁻⁶
Batch flux (m s^{-1}):	9.5x10 ⁻⁷	6.5x10 ⁻⁷	6x10 ⁻⁷	5.4×10^{-7}	4.8×10^{-7}	3.9×10^{-7}	3.3×10^{-7}	2.7×10^{-7}

to complete the following table.

note that the batch flux is the product of the settling velocity and the solid concentration

Plot the batch flux curve below.

Now a flux balance on a thickener provides the following result: $A(TC_u) = FC_0 = YC_u$

where A is the thickener area, (TC_u) is the critical thickener flux which is the intercept of a line drawn as a tangent to the batch flux curve and going through the desired underflow concentration, F and Y are the volume feed and underflow rates respectively, C_0 and C_u are the volume fraction feed and underflow concentrations respectively.

Note that T is, in effect, the velocity of solid movement in the thickener caused by underflow withdrawal at the solid concentration C_u .

The critical flux in this thickener giving an underflow discharge concentration of 13.8% v/v solids is (m s⁻¹): a: $10x10^{-7}$ b: $8.5x10^{-7}$ c: $7.2x10^{-7}$ d: $5.8x10^{-7}$

The minimum thicken	er area for this duty i	s (m ²):			
a: 480	b: 29000	c: 16000	d: 960		
If the thickener is circu	lar in cross-section t	he minimum thicke	ner diameter is (m):		
a: 25	b: 190	c: 140	d: 35		
The underflow rate is ($(m^3 hour^{-1})$:				
a: 1.25	b: 2.4	c: 4.6	d: 9.1		
The overflow rate is (r	n^3 hour ⁻¹):				
a: 40.4	b: 39.3	c: 37.1	d: 32.6		

An existing 5m diameter thickener is to be used to thicken 2400 tonnes per 24 hours of flocculated slurry containing 10% solids by mass (0.037 v/v) in water. The density of the solid is 2900 kg m⁻³. The following batch sedimentation results were obtained:

Time (mins):	0	2	4	6	8	10	12	20	30
Interface height (cm):	45.6	36.5	28.0	21.6	16.8	14.5	13.2	10.6	9.7

What will be the underflow concentration?

(Ans 19% by mass)

Calculate TC_u from operating data and draw a tangent to batch flux curve to give 0.075 v/v which converts to 0.19 by mass or 19%. Note flux theory is useful in predicting the behaviour of existing thickeners under differing operating conditions, not just for "paper" designs.